Developmental Brain ADC Atlas Creation from Clinical Images

Yangming Ou¹, Nathaniel Reynolds¹, Randy L. Gollub¹, Rudolph Pienaar³, Yanbing Wang¹, T. David Wang¹, Darren Sack¹, Katherine P. Andriole⁴, Steven Pieper⁵, Christopher Herrick¹, Shawn N. Murphy¹, P. Ellen Grant³, Lilla Zöllei¹

¹A. A. Martinos Biomedical Imaging Center, Massachusetts General Hospital, Charlestown, MA,

²Information Systems, Partners HealthCare System, Inc. Charlestown, MA, ³Children's Hospital Boston, Boston, MA, ⁴Brigham Women's Hospital, Boston, MA, ⁵Isomics, Inc.

Introduction

- Development of age-specific brain atlases for diffusion weighted images would significantly enhance clinicians ability to consistently detect subtle abnormalities.
- Here we test the ability to leverage a large number of MRIs within the clinical PACS to create age-specific normative brain atlases.
- The Apparent Diffusion Coefficient (ADC) provides a measure of water content in the brain, and thus a surrogate marker for myelin development [1].
- -Myelination undergoes dramatic changes from birth to 6 yrs of age and thus ADC can track brain development over time within and potentially across subjects [2].
- Prior developmental brain atlases have focused primarily on T1 or T2 showing volumetric changes with age [3,4], with only one uncluding an FA atlas and ADC values [5]. Also, most cover narrow age ranges (29-44 gestational weeks [5], 02 year old [3], 37-53 post-conceptional weeks, or >4 years old [4]). Our proposed atlases densely sample 0-6 years.

Methods

Image Retrieval

- -The Informatics for Integrating Blology and the Bedside (i2b2, www.i2b2.org) software suite enables the repurposing of healthcare data for clinical research.
- -A recently developed software plug-in, the Medical Imaging Informatics Bench to Bedside (mi2b2, www.mi2b2.org) workbench, allows clinical images to be retrieved from institutional Pictore Archiving and Communication System (PACS) databases by IRB-approved investigators.
- -At Partners HealthCare institutions, the Research Patient Data Registry (RPDR) serves as our institutional instance and the i2b2 precursor;
- -The mi2b2 workbench and the RPDR precursor together enable the repurposing of electronic medical records (EMRs) and medical images for research;
- -The detailed data request submitted to RPDR returned the EMRs of 4745 pediatric patients with a head MRI. From them 1600 patients were <6yr at the time of scan, with potentially normative brain MRI acquired after 2006.
- The collected ADC maps went through the following inspection to keep the "normative" subjects only.

Defining "Normative" Cohort

- -A licensed pediatrician manually reviewed the radiology reports and medical records to remove patients having diagnosis of any neuropsychiatric disease with known structural changes (e.g. stroke, trauma, HIV, CNS cancer etc).
- Also manually reviewed the ADC maps of subjects to keep the ones with high image qualities and visually absence of any structural-affecting pathologies.
- As a result, we have included a cohort of clinical ADC maps from 152 normative subjects who had scans during 2006-2013 and were free of any major neuropsychiatric diseases at the time of the scan.
- The included ADC maps have typical image sizes of 128x128x64 voxels and coxel sizes of 2.0x2.0x2.0 mm³, and were all acquired from a 3T Siemens Trio MRI scanner with diffusion parameter b=1000 s/mm².

Age Stratification

The 152 subjects were divided into 15 age groups, more densely into weeks or months in the first 2 years to capture the fast myelination and neurodevelopment, and then yearly afterwards (8 subjects in wk0, 8 in wk1, 7 in wk2, 9 in wk3, 11 in mon1, 12 in mon2, 10 in mon3, 7 in mon4, 9 in mon5, 11 in yr0.5-1, 12 in yr1-2, 13 in yr2-3, 12 in yr3-4, 13 in yr4-5 and 10 in yr5-6).

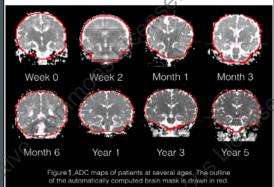
Automated Image Analysis

Brain Extraction

- -To remove extra-meningial tissues and non-brain structures (skull, eyes, nose, neck, etc), a fully-automated multi-atlas skull-stripping algorithm, originally developed for structural images of adults, has been adapted for the ADC maps of children 0-6 years old.
- Specifically, our prior knowledge came from a set of 15 ADC maps with manual annotations of brain masks.
- An extensively validated, publicly-available deformable registration tool, DRAMMS [7]

(http://www.cbea.upenn.edu/sbia/software/dramms), were used to non-linearly propagate the brain masks from the 15 manually-annotated ADC maps to the subject ADC map (computations run on an SGE cluster);

Automated selection out of 15 annotated ADC maps by computing, ranking and thresholding the correlation coefficients of the warped and the target ADC maps, followed by STAPLE-based label fusion, leading to the final brain mask in the target ADC map (see Figure 1 for some representative results).


 Visual inspections of the obtained brain masks demonstrated close agreements with expert inference; more detail of the algorithm and quantitative validation results pending a journal publication.

Atlas Construction

- An atlas was constructed for each stratified age group;
- A unbiased atlas construction strategy was used [8], extending the pairwise deformable registration DRAMMS [7] into a population-wise registration, without the need for the explicit and bias-inducing selection of any individual's image as the template (software available at http://www.cbica.upenn.edu/sbia/software/dramms);
- The constructed atlas reflects the average geometry and the average ADC intensity in a specific age group (see Figure 2 for example).

Results

Typical Brain Extraction Results in ADC Maps for 0-6 yo Children

Atlas Construction to Represent Mean Shape and Mean Intensity in a Typical Age Group

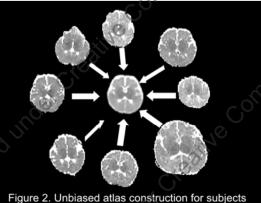


Figure 2. Unbiased atlas construction for subjects 2 months old. The atlas is representative of average geometry and average intensity.

Age-Specific ADC Atlases to Visualize Development

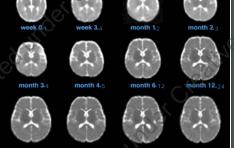


Figure 3. Pediatric ADC atlases generated for different ages

Discussions and Future Work

- The mi2b2 workbench can query and access valuable large numbers of PACS data.
- In this pilot study, we established a pipeline to construct atlases densely sampling 0-6 yr age range. The atlases display ADC values and visualize early neuro-development.
- The brain develops fast from birth to 2 years, and then develops at a relatively slower pace till 6 years;
- Visual inspections found that the average ADC values decrease with age (as the atlases become overall darker), revealing the myelination process in early life, which agrees with known clinical knowledge;
- Our future work will be
- 1) to collect larger number of structural and diffusion data using the mi2b2 workbench;
- to better understand the differences in the constructed atlases from data acquired at different scanners and in different institutions;
- 3) to quantitatively study ADC trends for whole brain, various tissue types and structures, and
- 4) to quantify the volumetric and myelination-related AD value changes in this age span.

References

- [1] Hagmann, P., et al.(2010). White matter maturation reshapes structural connectivity in the late developing human brain. PNAS, 107(44), 19067-10072.
- [2] Hermoye L. (2006) 'Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood' NeuroImage 29: pp. 493-504.
- [3] Shi, F., et al (2011). Infant brain atlases from neonates to 1-and 2-year-olds. PLoS One, 6(4), e18746.
- [4] Fonov, V., et al. (2011). Unbiased average ageappropriate atlases for pediatric studies. NeuroImage, 54: 313-27.
- [5] Oishi, K., et al. (2011). Multi-contrast human neonatal brain atlas:application to normal neonate development analysis. NeuroImage, 56(1), 8-20.
- [6] Doshi, J., et al. (2013). Multi-Atlas Skull-Stripping Academic Radiology, 20(12), 1566-1576.
- [7] Ou, Y., et al. (2011). DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting. Medical Image Analysis, 15(4), 622-639.
- [8] Guimond, A, Meunier, J, Thirion, JP (2000). Average brain models: A convergence study. Computer Vision and Image Understanding, 77(2), 192-210.

Acknowledgements

We gratefully acknowledge support from NIH 1 UL1 RR 025758-01, 1 U24 RR 025736-01 R01 EB014947-01 and Partners HealthCare System.