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Introduction

Protein interaction mapping is an important area of proteomics and large scale studies
on yeast, nematode and human were performed using two major technologies: Y2H
and AP-MS [1,2,3,4]. AP-MS identifies protein complexes, whereas Y2H detects
binary interactions. Networks derived from Y2H and AP-MS data have different
topologies, and the fundamental reasons for bait to be successful/unsuccessful are
not fully clear.

A dataset of 4135 genes used in both methods in yeast was used in our study for
developing naïve Bayesian models. Seven features were selected for annotating
these genes [Table 1].The frequency of terms for successful/unsuccessful baits were
computed. The work flow for the data analysis in our study is shown in Fig 1. The
naïve Bayesian model calculates posterior probabilities for a given hypothesis
(successful/unsuccessful bait) assuming that the features that describe instances are
conditionaly independent [5]. The combination of features were used to find an
optimum model based on performance measure such as sensitivity, specificity,
accuracy and ROC. Each bait in our study was assigned a bait compatibility index for
Y2H and AP-MS methods, which represents the log likelihood of a
successful/unsuccessful outcome.

To identify whether the annotated terms for each features were biased in one method
or the other, a two-tailed Fisher's exact test was performed by constructing a 2x2
contingency table for the frequency for each term across successful and unsuccessful
classes in Y2H and AP-MS datasets.

Rationale

Bait Compatibility Index (BCI): Bait selection is an important step in AP-MS and Y2H
based methods to identify protein interaction partners. Large-scale studies in the yeast
interactome show that approximately 50% the bait proteins were successful in
identifying interacting partners in both methods. This encouraged us to study those bait
proteins to investigate whether any features or terms annotated to the bait proteins have
any underlying reasons to become successful or unsuccessful. To measure whether the
confidence for a bait protein is likely to be successful/unsuccessful, we came up with
BCI scores. BCI is defined as a log likelihood ratio of posterior probability of successful
and unsuccessful outcomes for a given protein. This allows the researchers to prioritize
the baits in silico and this scoring method is better than the random selection of baits.

Features selection: Three criteria were applied in the selection of the final seven
features used in the model. 1) Features were selected that are known as important
mediators of protein interactions (e.g. domain/motifs, molecular function). 2) Features
which are well annotated across genome-wide datasets. 3) The sets of features that
shows minimal dependence upon each other were evaluated so that they can be
appropriately modeled using the naïve Bayesian model.

Naïve Bayesian (NB): Bayesian models allow us to combine dissimilar types of data
(i.e. numeric and categorical) and converting them to a common probabilistic
framework. A naïve Bayesian predictor was used to prioritize ranking of bait proteins
correlated to be successful by integrating sequence and annotated features of yeast
proteins. Evaluation of the importance of features and terms in the neural network or the
support vector machine is not possible from biological insight. Thus we have focused on
NB for its best accuracy and simplicity.

Summary

 We analysed the differences between the two major technologies, Y2H and
AP-MS for mapping protein interaction data and came up with BCI scores for
each bait protein based on a naïve Bayesian model.

 We studied features and terms that relate to the successful/unsuccessful
identification in both methods.

 The predictive power of the AP-MS model is higher when compared to the
Y2H model.

 Unlike Y2H, the AP-MS based model is dependent on features like sub-
cellular location and abundance.

Work flow of computational bait selection for interaction proteomics experiments

Table 1. Annotation features (F1-F7) and sources (UniProtKB was release 14.5, Kegg release 
48.0) used to construct feature vectors for each bait.

Figure. The ROC plot of AP-MS (red)
and Y2H(blue) optimum models of yeast
interaction datasets. Four features (F1:
PTMs; F2: Sub-cellular location; F6:
Pathway; F7: Abundance) combination
achieved maximum accuracy in the AP-
MS dataset where as two features (F5:
GO Molecular function; F6: Pathway )
achieved maximum accuracy in the Y2H
dataset. The areas under the curve for
AP-MS and Y2H models are 0.76 and
0.66 respectively. Figure 1. Overview of data processing work-flow. (A) Training and testing of Bayesian model to predict success 

according to features of each bait. (B) Identification of annotation terms significantly enriched in successful and 
unsuccessful baits

Abstract

Background: Yeast two-hybrid (Y2H) and affinity-purification mass-spectrometry (AP-
MS) are two commonly used techniques for large-scale detection of protein interactions.
Y2H identifies binary physical interactions by detecting reconstitution of a split
transcription factor via activation of a reporter gene. On the other hand, AP-MS captures
protein complexes near physiological conditions, and combines the specificity of
antibody-based protein purification with the sensitivity of mass spectrometry. These
techniques provide fundamentally different views of the protein interactome, and it is not
clear what the specific biases in each technique really are. Methods: Here, we
systematically study these biases and generate a novel score, the bait compatibility
index, that can be used to select baits according to their compatibility with each
technique. First, naïve Bayesian models were created based on sequence and
annotated features and abundance of bait proteins using yeast interaction proteomics
data to predict experimental outcomes. Second, we identified significantly enriched
terms across successful and unsuccessful baits in Y2H and AP-MS. Results: We
observe an accuracy of 71.25% using the optimum four features (post-translational
modifications, sub-cellular location, pathway and abundance) in the AP-MS dataset,
whereas Y2H experimental outcomes could be predicted to an accuracy of 63.38%
using only two features (GO molecular function and pathway). A set of 391 significant
annotation terms (p-value <0.05) were identified as over- represented in the AP-MS or
Y2H methods. Conclusion: We demonstrate that significant bias in interaction
proteomics datasets can be attributed to bait features by in-depth analysis of
serine/threonine phosphatase and peroxisome baits. We also show that the yeast
models may also be applied to human datasets, and provide a valuable predictor of the
suitability of baits for interaction proteomics experiments.
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Feature Description Source
F1 Post-translational modification UniProtKB
F2 Sub-cellular location UniProtKB
F3 Prosite motifs GenomeNet-Kegg
F4 Gene Ontology Biological process UniProtKB
F5 Gene Ontology  Molecular function UniProtKB
F6 Pathway GenomeNet-Kegg
F7 Abundance [Ref. 6]
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Figure. Hierarchical clustering enables visualization of patterns of enrichment of bait
features across studies and technologies. (A) Heat-map showing all 391 significant terms
(Fisher's exact test, p-value <0.05). Subsets of terms showing: (B) overall enrichment in
successful baits, (C) overall enrichment in unsuccessful baits, (D) enriched in successful AP-
MS baits and enriched in unsuccessful Y2H baits, (E) enriched in unsuccessful AP-MS baits
and enriched in successful Y2H baits. Example terms are shown for each class at far right.

Figure. Comparative analysis of selected
Y2H and AP-MS yeast networks. (A,B) A
set of 12 serine/threonine phosphatase
baits, tested using Y2H (A) and AP-MS
(B) are shown with their associated
interaction networks. * Network
corresponding to serine/threonine
phosphatase 2A (PP2A). The underlying
serine/threonine phosphatase network is
revealed with AP-MS but not Y2H. (C,D)
Peroxisome-annotated baits show a rich
interaction network from Y2H networks
(C) in comparison to AP-MS (D). (E)
Legend: Baits are represented as large
nodes, prey as small nodes. In each
case, baits annotated as serine threonine
phosphatases or functioning in the
peroxisome are outlined in color. Preys
outlined in color in (A,B) represent
phosphatase components or proteins
with phosphatase regulatory activity.
Preys outlined in color in (C,D) represent
proteins localized to the peroxisome. The
strength of the bait score, assessing the
compatibility of each bait with each
technology is represented by shaded
(white-gray-black) nodes.
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