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• Specific Peptides (SPs) are sequence markers (frames 1,2) for enzymatic functionality extracted from Swiss-Prot data. 
• When found on large strings of genomic or proteomic origin SPs provide quick enzymatic  annotations (frame 3). 
• They can also be directly applied to short read metagenomic data (frame 4) in order to extract an enzymatic spectrum (frame 5), 

as well as  taxonomic classification of its bacterial species. 
• Moreover, a particular subset of SPs underlies a novel algorithm for species-counting (frame 6). The latter can serve as 

complement to conventional 16S rRNA analysis in microbial metagenomics.

3) Data Mining of Enzymes

• Utilization of Specific Peptides for large volume enzymatic prediction
• Find whether protein is an enzyme and, if so, what is its EC classification
• Use coverage length (overall number of amino-acid in consistent SP hits) ≥ 7
• Testing method on 20K novel enzyme entries find precision 99% recall 92%

• Application to Sargasso Sea data (Nature 2004) uncovers 220K enzymes among 1M putative 
protein sequences

• Comparison of enzymatic spectrum with human gut microbiome of Gill et al (Science 2006)

Uri Weingart, Yair Lavi and David Horn 
Data Mining of Enzymes using Specific Peptides..
BMC Bioinformatics 2009, 10:446

Published papers, web-tools and algorithms are available at http://horn.tau.ac.il.

2)  Examples of  SP occurrences on sequences of enzymes

1)  EC hierarchy and specific peptides 

6) Species Counting in Metagenomic Data

• Use 4000 SPs of length ≥ 9 belonging to a subset S61 of 6.1.1. enzymes (aaRS) that are single-genes in 
bacterial genomes

• Identify lists of reads (or contigs) carrying the same SP and choose largest lists
• Algorithm constructs minimal number of fused strings that differ from each other, serving as estimates for the 

independent genes that could have lead to the observed reads
• Short reads lead to bounds on numbers of families, while long reads or contigs lead to lower-bound 

estimates of numbers of strains, species and genera.
• Method can serve as complement to conventional 16S rRNA 

Example of Short Reads                                  Contigs of human gut microbiota.
Data of Qin et al (Nature 2010) of 124 individuals.  

Erez Persi, Uri Weingart, Shiri Freilich and David Horn.  Submitted

5)  Enzymatic and Taxonomic Signatures of Metagenomes generated by SPSR

A user-friendly tool that displays occurrences of SPs on any protein sequence 
that is presented as a query, together with the EC assignments due to these SPs, 
is available at http://adios.tau.ac.il/DME.  
An SPSR tool providing SP hits on queried lists of short-reads is available at 
http://horn.tau.ac.il/SPSR .

Alignment is ordered according to SPs (in red). Spaces are inserted to highlight annotations of 
active and binding sites.

Vered Kunik, Yasmine Meroz, Zach Solan, Ben Sandbank, Uri Weingart, Eytan Ruppin and David 
Horn. Functional representation of enzymes by specific peptides. PLOS Computational Biology 2007, 
3(8):e167.

Analysis of 3 metagenomes from Dinsdale 
(Nature 2008) shows similarities between two sets 
and anomalous behavior in Soudan Black data.

Short reads have average length of 103 
nucleotides (SD 18).

4) The SPSR (Specific Peptide hits on Short Reads) Methodology
• Search SPs of length ≥ 7 amino-acids on all 6 frame translations of every Short Read

• Each SP hit assigns its EC label to the corresponding Short Read

• Accumulate Specific Peptide Short Read (SPSR) events according to EC labels

• Multiply by factors to obtain prediction of enzyme content (protein numbers)

• Factor concept is tested on simulations of short reads of the E coli genome for different choices of short read length

• Factors are deduced from analysis of artificial metagenomes constructed of various combinations of 7 out of 11 well-annotated  
bacteria (training set).

• Method is tested on metagenomes of 11 bacteria (test set) for which 

short reads of length 50 nucleotides are produced randomly from NCBI

genomes, with 5 fold coverage of each full genome.

• Taxonomic association is deduced from Taxon Specific SPs (TSPs) 

that belong to the set S61 of single-gene aaRS enzymes.

Uri Weingart, Erez Persi, Uri Gophna and David Horn 
Deriving enzymatic and taxonomic signatures of metagenomes 
from short read data.BMC Bioinformatics 2010, 11:390

Leading EC categories

• EC=6.1.1 aminoacyl tRNA synthetases
• EC= 1.1.1 (alcohol dehydrogenases with 

NAD+ or NADP+ as acceptor) 
• EC= 3.6.3 (hydrolases catalysing

transmembrane movement of substances).
• EC=2.7.7 Nucleotidyltransferases

Leading EC# in Sargasso Sea
EC # proteins Enzymatic activity 
2.7.7.6 5,993 DNA-directed RNA polymerase 
1.6.99.5 2,999 NADH dehydrogenase (quinone) 
5.99.1.3 2,610 DNA topoisomerase (ATP-hydrolysing). DNA gyrase. 
6.3.5.5 2,198 carbamoyl-phosphate synthase (glutamine-hydrolysing) 
3.6.3.14 2,169 H+-transporting two-sector ATPase. ATP synthase. 
2.7.7.7 2,083 DNA-directed DNA polymerase 

 

 
Index Short read (translated to amino-acid string)  

1 ILTSSSPEGARDFLVPSRLNPGKFYALPQAPQQFKQLI 
 

2 VFFSFLLGFTKGKFYALPQAPQTILSNLFMVSGFDKYFTNC X 
3 PSRLNPGKFYALPQAPQQFKQLIMVSGFDRYFQIAPCFR  
4 DFLVPSRLHKGKFYALPQAPQQFKQLVMVSGFDKYFQI X 
5 RFFSSFLGLHKGKFYALPQAPQQFKLTCHGIRVILSN X 
6 GARDFLVPSRLNPGKFYALPQAPQQFKQLIMVSGFD  
7 ARDFLVPSRLNPGKFYALPQAPQQFKQLVMVSGFDRYFQI X 
8 DFLVPSRLNPGKFYALPQAPQQFKQLIMVSGFDKYFQIA  
9 DFLVPSRLHKGKFYALPQAPQQFKQLVMVSGFDKYFQL X 

10 SRLNPGKFYALPQAPQQFKQLIMVSGFDRYFQIAPCF  

11 YFLVPSRLHKGKFYALPQAPQQFKLTCHGIRVILSNC X 

12 QAGCGLYCSKQIKSWKFYALPQAPQQFKQLIMI X 

13 LNPGKFYALPQAPQQFKQLIMVSGFDRYFQIAPCFR  

14 SFKSRKFYALPQAPQQFKQLIMVSGFDRYFQIAPCFG X 

3=3U10U13 PSRLNPGKFYALPQAPQQFKQLIMVSGFDRYFQIAPCFR X 

1U6U8 ILTSSSPEGARDFLVPSRLNPGKFYALPQAPQQFKQLIMVSGFDKYFQIA X 

Species-counting example of Rios Mesquites metagenomic short 
reads carrying a common SP. The first 14 rows display the short 
reads.  X indicates inconsistency of short read with all others. 
After elimination of 8 reads we are left with 6 reads that can be 
fused into the two last rows. Thus the 10 strings indicated by X 
form a possible solution of the minimal chromatic number 
problem (for a graph whose vertices are reads and edges are 
inconsistency relations), resulting in a species count of 10.
Since these are short reads, we estimate that this count indicates 
the existence of 10 different families or orders.

Leading SPs:
ISRQLWWGH (EC=6.1.1.9, gene=SYV)   1488 hits. Species Count 1009.
TRFPPEPNGYLH (EC=6.1.1.18, gene=SYQ)  1961 hits. Species Count 888.
GEAAFYGPK (EC=6.1.1.3, gene=SYT) 1488 hits. Species Count 718.

Adding non-leading SPs we obtain counts of 1136, 937 and 1076, respectively. 

Differentiating between strains 
and species.

This follows trends of different S61 
genes in Uniprot data as shown to 
the right.

By analyzing all strings of the 
leading SPs and the distances 
between them, we conclude from 
SYQ (cut at distance 2) that more 
than 400 may account for different 
strains rather than different species. 

Statistics of Uniprot show a cutoff at d=2 aa in SYQ
sequences distinguishes between strains (D) and species (F).

Class Edwards CARMA S61TSP

Alphaproteobacteria 40% 37% 45%

Gammaproteobacteria 54% 40% 45%

Betaproteobacteria 2% 8% 8%

Epsilonproteobacteria 0% 2% 2%

Deltaproteobacteria 3% 13% 0%

Organism Phylum Precision
Mycobacterium tuberculosis. Actinobacteria 96%
Mycobacterium bovis. Actinobacteria 96%
Sulfurihydrogenibium azorense Aquificae no prediction
Aquifex aeolicus. Aquificae no prediction
Cytophaga hutchinsonii Bacteroidetes 74%
Gramella forsetii Bacteroidetes 74%
Pelodictyon luteolum Chlorobi 91%
Chlorobium chlorochromatii Chlorobi 95%
Nostoc punctiforme Cyanobacteria 81%
Anabaena variabilis Cyanobacteria 89%
Synechocystis sp. Cyanobacteria 96%
Bacillus cereus (strain ZK). Firmicutes 94%
Bacillus cereus (strain ATCC 14579 ). Firmicutes 95%
Pseudomonas aeruginosa. Proteobacteria 94%
Rhizobium meliloti Proteobacteria 97%
Salmonella typhimurium. Proteobacteria 99%
Shigella flexneri. Proteobacteria 100%
Salmonella typhi. Proteobacteria 100%
Escherichia coli (K12). Proteobacteria 99%
Caulobacter crescentus Proteobacteria 88%
Leptospira biflexa serovar Patoc Spirochaetes 72%
Thermotoga petrophila Thermotogae 91%

Phylum predictions 
according to S61 TSPs 
for 22 bacteria 

Comparison of class predictions 
within proteobacteria for the 
Soudan Red data with the 
methods of Edwards (16S 
rRNA) and of Carma (protein 
based).

Predictions of EC=1.1.1/EC=6.1.1 for artificial metagenomes 
of 7 out of 11 bacteria from the test set

SYV SYQ
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